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Abstract

We obtain parameters for the angular distribution of the B0 → K ∗0µ+µ−, for decay
products up to q2 = 19 GeV2/c4

Manual cutting, neural networks and decision tree methods are explored to separate
candidate data from background signal

Negative loglikelihood minimisation performed to fit angular observables with uniangular
distributions

Obtained parameters show agreement to predicted Standard Model (SM) values almost
entirely within less than one standard deviation
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Theory: Introduction
Study the decay:

B0 → (K ∗0 → K+π−)µ+µ−

Dynamics described by three angles (θl , θK , ϕ) and the di-µ invariant mass squared q2

Figure 1: Geometry of Decay

Team 10 (Imperial College London) Angular Analysis of B0 → K∗0µ+µ− Decay March 2022 4 / 33



Theory: Features of B0 → K ∗0µ+µ− decay

B0 lifetime means we expect it to decay
at a secondary vertex

K ∗0 decays by strong mechanism, so it is
effectively instant with regards to
detection

Expect daughter particle tracks to meet at
same point, have considerable impact
parameters and transverse momentum

Expect B0 to have low impact parameter
and transverse momentum Figure 2: Diagram illustrating primary and

secondary vertices [1]
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Theory: Angular Distribution

The full angular distribution follows (up to normalisation) [2]:
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Theory: Angular Distribution

Integration renders uni-angular distributions [3, 4]:
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Other optimised observables can be obtained from these, such as:
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Candidate Selection: Overview

Multiple approaches were explored for the selection of event candidates from the data
▶ Manual cuts
▶ Machine learning: Decision Tree
▶ Machine learning: Neural Network
▶ Combined filtering (Machine Learning and manual cuts)
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Manual Cuts - Values

Cut Threshold Values

q2 Cuts 0.1 < q2 < 19, q2 /∈ [8.0, 11.0], q2 /∈ [12.5, 15]

Particle ID Checks XProbX > 0.5 for all particles X

Invariant Mass Checks 5170 < m(B0) < 5700, 790 < m(K ∗0) < 1000 [MeV /c2]

Momentum Checks PT (π),PT (K ) > 250, PT (µ
+),PT (µ

−) > 800 [MeV /c]

IP and Vertex Checks

χ2
IP(B

0) < 16,χ2
FD(B

0) > 64,
χ2
IP(µ, µ,K , π) < 9,χ2

EV (B
0) < 8,

χ2
EV (µ, µ) < 9,χ2

FD(K
∗0) < 9,

χ2
FD(K

∗0) > 9

Table 1: Table of manual cuts
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Manual cuts: q2

(a) Simulated B0 → J/ψK∗0 (b) Simulated B0 → ψ(2s)K∗0 (c) Unfiltered Dataset

Figure 3: q2 and m(Kπµµ) mass of charm resonance simulations and the unfiltered dataset
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Machine Learning (ML): Summary

We can perform a supervised classification task for filtering signal

Given training examples (x (i), y (i)), where x are our features (the measured decay
characteristics) and y is the target (the type of decay), learn a function h(x) that can
perform h : X 7→ Y by minimising an objective function.

Advantages of a machine learning approach
▶ Removes need for manual inspection of data
▶ Can learn non-linear decisions (between different variables)
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Machine Learning (ML): Decisions

1 Perform binary classification (signal vs other)
▶ Fewer labels mean a model with the same complexity has higher predictive power
▶ Final goal is to filter signal, multiclass classification is not needed

2 Perform manual cuts prior to ML (q2 and PID) and trained on cut data to prevent
domain shift

3 Remove certain features from discussion
▶ Variables you are trying to measure e.g. cos θk , cos θl , q

2

▶ Variables with no meaning e.g. year

4 Model evaluated with test-train split of 75%, 25% with different random seed

5 Train Model on all of the data

6 Optimise for precision (true signal/ predicted signal)
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ML: Ensemble Learning- Random Forest

Tree-based methods partition the feature
space into a series of rectangles/
hyper-cubes

Trees were trained via binary splitting
using the Gini-Impurity metric

Regularisation prevents overfitting
▶ Hyperparameter tuning
▶ Ensemble Learning: Bagging 100 trees

to make a forest [5]
Figure 4: Diagram showing how a decision tree
splits up the feature space in 1 dimension [6]
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ML: Random Forest Performance

Figure 5: Plot illustrating how the decision
threshold can be tuned (default 0.5) to vary the
precision and recall

Figure 6: Plot showing how varying the random
forest decision threshold changes the number of
signal events retained
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ML: Neural Network

A layered network of neurons that apply
and change weights of features based on a
specified activation function [7]

Tested for 8-64 neurons in each layer, and
1-3 middle layers [8]

Compromised with 32 neurons in 2 middle
layers, and one dropout layer for
regularisation

The resulting model has a 98.09%
accuracy and a 6.81% loss.

Figure 7: Structure of a neural network [9].
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ML: Neural Network

Confusion Matrix: Binary NN Classification
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ML: Neural Network

SHAP Plot: Binary NN Classification
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Fitting: -Log-likelihood Minuit Minimization

Figure 8: Flowchart of Fitting Procedure

Team 10 (Imperial College London) Angular Analysis of B0 → K∗0µ+µ− Decay March 2022 18 / 33



Fitting: Acceptance function

Acceptance is parameterised in four dimensions as [2, 10]:

ε(cos θl , cos θK , ϕ, q
2) =

∑
ijmn

cijmnLi (cos θl)Lj(cos θK )Lm(ϕ)Ln(q
2) (5)

where Lp denotes Legendre polynomials, and all variables are rescaled to the range [−1, 1]

Lp go up to 4th, 5th, 6th and 5th order in cos θl , cos θK , ϕ and q2 respectiely

Coefficients cijmn are determined using method of moments approach on (originally) flat
dataset in all angular variables and q2 [10]

χ2 analysis used to determine a suitable polynomial order
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Fitting: Acceptance function
Single-variable acceptance functions can be obtained through the integration of the 4D
acceptance function
For each bin, ε is integrated over other angular variables and the q2 range of the bin, and
then re-normalised

(a) Acceptance function in q2 (b) Acceptance functions in cos θl for bins 0 and 6

Figure 9: Acceptance function projections for NN dataset
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Fitting: Mass Distribution Model

The background distribution is modelled by an exponential decay:

Nb(mKπµµ) = Ae−λmKπµµ (6)

where A and λ are variables to be fitted for each q2 bins

The signal distribution is modelled by a Gaussian distribution

Ns(mKπµµ) = Be
− 1

2

(
mKπµµ−m0

σ

)2

(7)

where B, m0 and σ are determined by the fit.
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Fitting: Signal Yield

The mass model was used to calculate
B0 → K ∗0µ+µ− signal yield

Yields were obtained through integration
of the mass model

Signal candidate yields were:
▶ 2048± 44 for Decision Tree
▶ 2112± 46 for Neural Network

Figure 10: Mass spectrum for q2 ∈ [1.0, 6.0]
GeV2/c4 for Decision Tree data
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Fitting: Angular Background Model

The background model is described by an second-order Chebyshev polynomial:

Nb(x) =
2∑

n=0

cnTn(x) (8)

where x are angular variables cos θk , cos θl and ϕ, cn are the coefficients and Tn are the
Chebyshev polynomials.

T0(x) = 1, T1(x) = x , T2(x) = 2x2 − 1

cn were obtained by fitting the high mass range m(Kπµµ) > 5355 MeV/c2
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Fitting: Angular Distribution

The angular distribution fitted, then, is of the form

Ptot = fsigPsig + fbkgPbkg

= (1− fbkg)Psig + fbkgPbkg (9)

where Psig is the signal PDF, with acceptance, Psig is the background model, and fsig, fbkg
are the fraction of signal and background respectively

fbkg is determined through the integration of the mass model
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Fitting: Results

(a) m(Kπµµ) mass distribution (b) cos θl fit (c) cos θK fit

Figure 11: Mass spectrum, cos θl and cos θK fits for q2 ∈ [1.0, 6.0] GeV2/c4 for Decision Tree data

Team 10 (Imperial College London) Angular Analysis of B0 → K∗0µ+µ− Decay March 2022 25 / 33



Fitting: Results

(a) m(Kπµµ) mass distribution (b) cos θl fit (c) cos θK fit

Figure 12: Mass spectrum, cos θl and cos θK fits for q2 ∈ [15.0, 17.0] GeV2/c4 for Decision Tree data
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Fitting: Error Analysis

Statistical uncertainty on the acceptance is found by bootstrapping with the acceptance
dataset

▶ This error is found to be negligible compared to the uncertainty on the angular observables
obtained from the negative loglikelihood minimisation

Systematic error in the acceptance is found by carrying fits with higher order acceptances
▶ Difference between the values obtained in higher and lower order is taken as the error

Similarly, systematic error in the angular background model is found by performing fits
that go up to fourth order

▶ Difference between the values obtained in higher and lower order is taken as the error
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Fitting: Results for Angular Observables

(a) AFB from different q2 bins (b) FL from different q2 bins (c) P2 from different q2 bins

Figure 13: Results for angular observables AFB , FL, P2, average of all datasets and distributions fitted.
Caps indicate extent of statistical error. Shaded area denotes SM predictions, different colours used to
distinguish overlapping bins.
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Fitting: Results for Angular Observables

Bin q2 range AFB FL P2

0 0.1 - 0.98 -0.17 ± 0.02 ± 0.01 0.32 ± 0.03 ± 0.03 -0.16 ± 0.02 ± 0.02
1 1.1 - 2.5 -0.20 ± 0.06 ± 0.02 0.76 ± 0.05 ± 0.02 -0.5 ± 0.1 ± 0.09
2 2.5 - 4.0 0.09 ± 0.07 ± 0.05 0.80 ± 0.07 ± 0.07 0.3 ± 0.2 ± 0.2
3 4.0 - 6.0 0.06 ± 0.04 ± 0.008 0.67 ± 0.05 ± 0.02 0.11 ± 0.09 ± 0.02
4 6.0 - 8.0 0.23 ± 0.04 ± 0.01 0.61 ± 0.04 ± 0.03 0.39 ± 0.08 ± 0.04
5 15.0 - 17.0 0.45 ± 0.03 ± 0.0008 0.34 ± 0.05 ± 0.01 0.45 ± 0.05 ± 0.006
6 17.0 - 19.0 0.33 ± 0.05 ± 0.0009 0.25 ± 0.05 ± 0.003 0.29 ± 0.05 ± 0.001
7 11.0 - 12.5 0.43 ± 0.03 ± 0.009 0.43 ± 0.03 ± 0.008 0.51 ± 0.05 ± 0.01
8 1.0 - 6.0 -0.06 ± 0.03 ± 0.003 0.73 ± 0.04 ± 0.008 -0.15 ± 0.09 ± 0.009
9 15.0 - 17.9 0.45 ± 0.03 ± 0.0005 0.31 ± 0.038 ± 0.002 0.44 ± 0.03 ± 0.0009

Table 2: Table of results for AFB , FL and P2, averages of all fits. The first error is statistical and the
second is systematic
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Conclusion

Several Candidate Selection methods were explored, resulting in hybrid ML and manual
cuts approaches with neural networks and decision trees

Negative loglikelihood minimisation fit was performed for uniangular distributions in each
q2 bin, taking into account angular acceptance and background model

Agreement found with SM in measured observables, to within less than one standard
deviation in almost all cases

Hence we do not find conclusive evidence of beyond SM physics
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