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Abstract

o We obtain parameters for the angular distribution of the B® — K*Cu*+u~, for decay
products up to g° = 19 GeV?/c*

@ Manual cutting, neural networks and decision tree methods are explored to separate
candidate data from background signal

@ Negative loglikelihood minimisation performed to fit angular observables with uniangular
distributions

@ Obtained parameters show agreement to predicted Standard Model (SM) values almost
entirely within less than one standard deviation
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Theory: Introduction

@ Study the decay:
B® - (K*® = KTn )t pu~
e Dynamics described by three angles (6;, 0k, ¢) and the di-p invariant mass squared g2

£

Figure 1: Geometry of Decay
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Theory: Features of B® — K*0u "1~ decay

o B lifetime means we expect it to decay
at a secondary vertex

~

o K*0 decays by strong mechanism, so it is Impact

. . . arameter

effectively instant with regards to P
detect|0n Primary

Jet direction

—

@ Expect daughter particle tracks to meet at
same point, have considerable impact
parameters and transverse momentum

o Expect B to have low impact parameter

and transverse momentum Figure 2: Diagram illustrating primary and
secondary vertices [1]
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Theory: Angular Distribution

e The full angular distribution follows (up to normalisation) [2]:

d°r A Fy cos® 6 +§(1—F)sin29

dq?dcosf/d cosOxdp 327 | * KTy t K
1

+ 4_1(1 — FL)sin2 0 cos 20,

— F; cos? Ok cos 26, + S5 sin? Ok sin’ 6, cos 2¢
+ S4sin 20k sin 26, cos ¢ + Ss sin 20 sin 0, cos ¢

4
+ §A,:B sin? O cos 0 + Sy sin 20 sin 0, sin ¢

+ Sgsin 20k sin 20, sin ¢ + Sg sin® O sin? 0 sin 2¢
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Theory: Angular Distribution

@ Integration renders uni-angular distributions [3, 4]:

d2rP 313 1 1 8
S =5 |5 5fLt 5c0s20,(1—3F)+ ZA 9
dg2dcosf, 8|2 2 L+ 2C°5 (1 —=3F) + 3 FB COs 0

d2rp 3 9 3 )
dq?dcosfx 2 LUK + 4( L)sin” Ok
d2r, 1 _
d2ds ~ 2n (S3c0s2¢ + Sgsin2¢ + 1)

@ Other optimised observables can be obtained from these, such as:

. 253 _2 Ars . —Sg
T1-F P 30-F) P 1-FR

Py
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Candidate Selection: Overview

@ Multiple approaches were explored for the selection of event candidates from the data
» Manual cuts
» Machine learning: Decision Tree
» Machine learning: Neural Network
» Combined filtering (Machine Learning and manual cuts)
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Manual Cuts - Values

| Cut | Threshold Values
q® Cuts 0.1 <q?<19, ¢°¢[8.0,11.0], ¢* ¢ [12.5,15]
Particle ID Checks XProbX > 0.5 for all particles X
Invariant Mass Checks || 5170 < m(B°) < 5700, 790 < m(K*?) < 1000 [MeV//c?]

XzP(BO) < 16’X%D(BZ) > %4,
IP and Vertex Checks Xip(, 1, K, ) < 9,xEy(B7) <8,

X%‘V(Ma p) < 9'X%-'D(K*o) <9,

|
|
|
|
Momentum Checks Pr(m), Pr(K) > 250, Pr(u*), Pr(1~) > 800 [MeV /c] |
XEp(K*®) > 9

Table 1: Table of manual cuts
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Manual cuts: g>

B = (J/tp— p) K
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Figure 3: g% and m(Kmpup) mass of charm resonance simulations and the unfiltered dataset
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Machine Learning (ML): Summary

@ We can perform a supervised classification task for filtering signal

o Given training examples (x(), y()) where x are our features (the measured decay
characteristics) and y is the target (the type of decay), learn a function h(x) that can
perform h: X +— ) by minimising an objective function.

@ Advantages of a machine learning approach

» Removes need for manual inspection of data
» Can learn non-linear decisions (between different variables)
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Machine Learning (ML): Decisions

© Perform binary classification (signal vs other)

> Fewer labels mean a model with the same complexity has higher predictive power
» Final goal is to filter signal, multiclass classification is not needed

@ Perform manual cuts prior to ML (g2 and PID) and trained on cut data to prevent
domain shift
© Remove certain features from discussion

» Variables you are trying to measure e.g. cosfy, cosf;, g°
» Variables with no meaning e.g. year

@ Model evaluated with test-train split of 75%, 25% with different random seed
© Train Model on all of the data
@ Optimise for precision (true signal/ predicted signal)
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ML: Ensemble Learning- Random Forest

@ Tree-based methods partition the feature

60

space into a series of rectangles/

o .
b
oo,

hyper-cubes

Variable 2
B

@ Trees were trained via binary splitting
using the Gini-Impurity metric

20

@ Regularisation prevents overfitting
» Hyperparameter tuning

» Ensemble Learning: Bagging 100 trees '
to make a forest [5]

2
Variable 1

Class

o
1

Figure 4: Diagram showing how a decision tree
splits up the feature space in 1 dimension [6]
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ML: Random Forest Performance
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Figure 5: Plot illustrating how the decision
threshold can be tuned (default 0.5) to vary the

precision and recall
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ML: Neural Network

@ A layered network of neurons that apply
and change weights of features based on a i

specified activation function [7]

@ Tested for 8-64 neurons in each layer, and

1-3 middle layers [8]

@ Compromised with 32 neurons in 2 middle
layers, and one dropout layer for

regularisation

@ The resulting model has a 98.09%
accuracy and a 6.81% loss.
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Figure 7: Structure of a neural network [9].
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ML: Neural Network

@ Confusion Matrix: Binary NN Classification

Confusion Matrix
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2
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ML: Neural Network

@ SHAP Plot: Binary NN Classification
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Fitting: -Log-likelihood Minuit Minimization

PDF without background = angular distribution * obtained
acceptance(TESE)

fi
PDF with background = normalised PDF without background + % (WOE) *
~Tbkg
fitted background PDF (TESE),

Log-likelihood Minuit
Minimization

TESE = To Extract Systematic Error
WOE = With Obtained Error

Figure 8: Flowchart of Fitting Procedure

Team 10 (Imperial College London) Angular Analysis of B — K*;L+/_L_ Decay March 2022 18/33



Fitting: Acceptance function

@ Acceptance is parameterised in four dimensions as [2, 10]:
2y 2
e(cos by, cos bk, p,q°) = Z CiimnLi(cos 01)Lj(cos Ok ) Lm(0)Ln(q7) (5)
ijmn

where L, denotes Legendre polynomials, and all variables are rescaled to the range [—1, 1]

L, go up to 4th, 5th, 6th and 5th order in cos 6, cosflk, ¢ and g? respectiely

Coefficients cjjmn are determined using method of moments approach on (originally) flat
dataset in all angular variables and g2 [10]

x? analysis used to determine a suitable polynomial order
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Fitting: Acceptance function

@ Single-variable acceptance functions can be obtained through the integration of the 4D

acceptance function

o For each bin, ¢ is integrated over other angular variables and the g range of the bin, and

then re-normalised
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(a) Acceptance function in ¢° (b) Acceptance functions in cos 6, for bins 0 and 6

Figure 9: Acceptance function projections for NN dataset
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Fitting: Mass Distribution Model

@ The background distribution is modelled by an exponential decay:
Nb(mKﬂ,u,u) — Ae—)\mKwuu

where A and )\ are variables to be fitted for each g bins

@ The signal distribution is modelled by a Gaussian distribution

mKTrH,u,_""O)2

1
Ns(MKrppu) = Be_z( o

where B, mg and o are determined by the fit.
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Fitting: Signal Yield

= .
Z 150 JV+'JF
§ 125 :,’ ."
@ The mass model was used to calculate g 100 .
B® — K*Ou* i~ signal yield E s + Jf
@ Yields were obtained through integration é 50 + ‘
of the mass model E 1 Y
@ Signal candidate yields were: N oL ‘ "y e -
» 2048 + 44 for Decision Tree 3200 3300 3400 2300 e 3700
» 2112 + 46 for Neural Network m{Kmups) (MeV/e?)

Figure 10: Mass spectrum for g% € [1.0,6.0]
GeV?/c* for Decision Tree data
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Fitting: Angular Background Model

@ The background model is described by an second-order Chebyshev polynomial:

2
Np(x) = cnTa(x) (8)
n=0

where x are angular variables cosfy, cosf; and ¢, ¢, are the coefficients and T, are the
Chebyshev polynomials.

To(x) =1, Ti(x)=x, Ta(x)= 2x% — 1

@ c, were obtained by fitting the high mass range m(Kmuu) > 5355 MeV/c?
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Fitting: Angular Distribution

@ The angular distribution fitted, then, is of the form

Prot = fsigPsig + fokg Pokg
= (1 — fokg)Psig + fokg Poke (9)

where Pg;g is the signal PDF, with acceptance, Pk is the background model, and fg, foig
are the fraction of signal and background respectively

@ fug is determined through the integration of the mass model

Team 10 (Imperial College London) Angular Analysis of B — K*;L"'/_L_ Decay March 2022 24 /33



Fitting: Results
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Figure 11: Mass spectrum, cos); and cos 6k fits for g° € [1.0,6.0] GeV?/c* for Decision Tree data
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Fitting: Results
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Figure 12: Mass spectrum, cos ; and cos 6k fits for g> € [15.0,17.0] GeV?/c* for Decision Tree data
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Fitting: Error Analysis

@ Statistical uncertainty on the acceptance is found by bootstrapping with the acceptance
dataset

» This error is found to be negligible compared to the uncertainty on the angular observables
obtained from the negative loglikelihood minimisation

@ Systematic error in the acceptance is found by carrying fits with higher order acceptances
» Difference between the values obtained in higher and lower order is taken as the error

@ Similarly, systematic error in the angular background model is found by performing fits
that go up to fourth order

» Difference between the values obtained in higher and lower order is taken as the error
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Fitting: Results for Angular Observables
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Figure 13: Results for angular observables Arg, F;, P,, average of all datasets and distributions fitted.
Caps indicate extent of statistical error. Shaded area denotes SM predictions, different colours used to
distinguish overlapping bins.
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Fitting: Results for Angular Observables

Bin‘ g range ‘

AFB

|

Fr

P>

0

O ~NO OB WN

©

0.1-0.98
1.1-25
25-4.0
4.0-6.0
6.0 - 8.0
15.0-17.0
17.0-19.0
11.0 - 12,5
1.0-6.0
15.0-17.9

-0.17 £ 0.02 £ 0.01
-0.20 + 0.06 £ 0.02
0.09 £ 0.07 £ 0.05
0.06 £ 0.04 £+ 0.008
0.23 £ 0.04 £ 0.01
0.45 £ 0.03 £+ 0.0008
0.33 £ 0.05 £ 0.0009
0.43 £ 0.03 £+ 0.009
-0.06 £+ 0.03 £ 0.003
0.45 £ 0.03 £+ 0.0005

0.32 £ 0.03 £ 0.03
0.76 £ 0.05 £+ 0.02
0.80 £ 0.07 £ 0.07
0.67 £ 0.05 £ 0.02
0.61 £ 0.04 £ 0.03
0.34 £ 0.05 £ 0.01
0.25 £ 0.05 £+ 0.003
0.43 £ 0.03 £ 0.008
0.73 £ 0.04 & 0.008
0.31 £ 0.038 £ 0.002

-0.16 £+ 0.02 £ 0.02
-0.5 £ 0.1 £ 0.09
03+02+02
0.11 £ 0.09 £+ 0.02
0.39 £ 0.08 £ 0.04
0.45 £ 0.05 £+ 0.006
0.29 £ 0.05 £ 0.001
0.51 £ 0.05 £ 0.01
-0.15 £ 0.09 £ 0.009
0.44 £ 0.03 £+ 0.0009

Table 2: Table of results for Arg, F; and P,, averages of all fits. The first error is statistical and the
second is systematic
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Conclusion

@ Several Candidate Selection methods were explored, resulting in hybrid ML and manual
cuts approaches with neural networks and decision trees

@ Negative loglikelihood minimisation fit was performed for uniangular distributions in each
g? bin, taking into account angular acceptance and background model

@ Agreement found with SM in measured observables, to within less than one standard
deviation in almost all cases

@ Hence we do not find conclusive evidence of beyond SM physics
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