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Abstract

Explaining a process algorithmically, given only input-output examples has been a
long-standing core challenge of machine learning. Previous approaches introduce
frameworks for inferring programs in a domain-specific language (DSL) that is usually
a static set of manually designed primitives. This places a fundamental limitation on
scalability and adaptability. This thesis introduces a novel framework for program
synthesis that builds on the strengths of a transformer-guided search, a Bayesian
inference scheme and neural library learning. We propose a method that integrates
trainable neural primitives with a wake-sleep algorithm for improving generalisation in
Programming-by-Example (PBE) tasks. By leveraging a transformer-based synthesis
model, our approach addresses scalability and adaptability across domains. We show
that this system allows the construction of DSLs dynamically, enabling more efficient
and flexible program generation. Our primary contributions include the development
of a system capable of finding general solutions to unseen tasks, facilitated by the use
of a curriculum learning process. Initial experiments on a mixture of Boolean and
arithmetic domains validate the feasibility of this approach, demonstrating successful
discovery and reuse of compositional abstractions. Based on our findings, we further
argue that there is significant potential for expanding the generalisation capabilities
of neural models by inducing structured, compositional reasoning through a strong
algorithmic prior.
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Chapter 1

Introduction

Learning systems at a fundamental level work by manipulating some representation
of their environment according to their inner model, optimising either or both of
these based on some signal of their reliability. It is a guiding principle in designing
artificial learners that they should share some characteristics with natural biological
manifestations of a learning agent, the only examples being animals and ourselves,
humans [1–4]. To understand them and try to replicate or simulate their behaviour in
a way that is consistent across domains, is the subject of much of machine learning,
either as a direct goal or implicit in the procedure or data used. As a way of modelling
the brain’s learning for its study, it is helpful for us to adopt the view of the brain as a
biological computer [5] – or more specifically a computational theory of mind [6–8].
With this starting point, a potential path towards understanding it is immediately
clear: the use of programs as inner representations of learnt behaviour.

Perhaps most importantly, programs allow the mind to simulate states, hypotheses
and behaviour of just about any entity it has information about. Compressing the
most salient patterns into a compact representation, programs can be accessed later to
provide a model of the objects and processes around us. One of the first formulations
of this hypothesis is found in Fodor’s The Language of Thought [9] where the central
premise of mental representations as structured entities – corresponding to objects,
properties and states in the environment – is presented along with the idea of a formal
grammar or set of syntactic rules for manipulating these. There is a specific advantage
to programmatic representations that is the subject of this work: it equips the mind
with the ability to reason about and explain its observations. To further illustrate this
point, we now look at the role of structured, algorithmic reasoning in intelligence.

Reasoning with algorithms

Humans excel at applying step-by-step procedures or algorithms to explain phenomena
around them. Take, for instance, a doctor diagnosing a patient. When a patient
presents symptoms, the doctor likely cannot immediately guess the cause as they are
unable to consider all possible diseases at once. Instead, they follow a structured
reasoning process. Given data about symptoms, medical history and lifestyle factors
they form hypotheses about potential conditions. As the doctor mentally runs through
these options, they compare the symptoms against known patterns, evaluating the
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likelihood of each condition and refining the diagnosis further until they arrive at the
most likely explanation.

It poses a central challenge in machine learning to enable neural models to similarly
learn these algorithms from data. Even the largest and most ambitious efforts in
building artificial intelligence systems (such as Large Language Models) fail to perform
this type of multi-step reasoning in a reliable and trustworthy manner [10–14]. But
we need not look into such complex domains to see this gap – consider how young
children effortlessly learn intuitive physics to catch a ball, and solve puzzles with
ease before they know what combinatorics is. This capability emerges naturally in
humans, yet, machine learning models often struggle with these tasks, as seen in
challenges like ARC (Abstraction and Reasoning Corpus) [15, 16], where simple visual
and algorithmic abstract reasoning performance of current systems remains about
half that of the average human attempt [16]. Additionally, while neural networks
can easily approximate functions over continuous spaces, tasks such as sorting, logic
inference, or recursive problems require more structured representations. This is where
the integration of symbolic components, formal languages and modular computational
concepts becomes crucial.

Neural Program Synthesis as an Approach to Reasoning

Symbolic approaches have historically been outperformed by deep learning models in
general, though it is also clear that some domains inherently require a constrained
formal language that discretises and restricts the search space to only valid terms in a
grammar (adhering to some syntactic and semantic rules). A straightforward example
of this type of setting is mathematical reasoning, where most successful models employ
a hybrid of neural networks and symbolic representations [17, 18].

Reasoning in a formal language has eluded deep learning models until recently,
primarily because these models are designed to excel at tasks like perception and usually
finding a local approximation of complex functions, where continuous representations
are ideal. However, solving tasks that require structured, rule-based reasoning – such
as mathematical problem-solving or algorithmic reasoning – demands discrete, modular
representations that are not easily captured by traditional neural networks [19, 20].
While they are known for learning hierarchical representation (e.g. in computer
vision [21]), deep learning architectures typically lack the strict compositionality and
systematicity needed to represent formal logic, mathematical expressions, or procedural
rules efficiently.
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This gap has sparked renewed interest in approaches that combine the strengths of
both neural networks and symbolic systems [18, 22]. These methods aim to leverage the
learning capabilities of neural networks while incorporating a discrete, formal grammar.
Given the vast search space, naive exhaustive search is infeasible (the number of
combinations scaling exponentially with symbol vocabulary size) calling for more
sophisticated exploration. For example, Neural Program Synthesis (NPS) has emerged
as a promising approach, where deep learning is used to guide the search through a
space of formal programs or logical expressions. Offering significant improvement on
traditional search methods [23–25], NPS offers the potential to bring reasoning tasks
within the reach of neural models.

In Bayesian Program Synthesis [26], which forms the foundation of our method,
models search for programs that best explain the data while balancing complexity and
likelihood. The Bayesian approach provides a principled treatment of approximate
inference of latent variables conditioned on observed ones, while offering a natural
framework for integrating neural networks to guide the search process to amortise costs.
Models like DreamCoder [27] use this framework to infer programs from examples,
with a recognition model guiding the search through a library of concepts – the set of
objects and functions it builds algorithms from.

Concept Libraries

By treating the search for programs as a probabilistic inference problem, DreamCoder
can generate concise programs using a set of learned concepts or building blocks which
we will refer to as primitives. There is an initial set of these, which – crucially for our
discussion going forward – is not learned but provided to the system by the engineer or
user. These represent basic domain-specific operations (e.g. arithmetic or logic gates)
and can be composed to form more complex programs. In the wake-sleep algorithm
(originally from [28]) used by DreamCoder, the system alternates between synthesising
programs (the wake phase) and refining its library of concepts based on observed
programs (the sleep phase), allowing it to continually improve its program synthesis
capabilities by effectively developing its own programming language.

An essential part of most program synthesis work is defining the Domain-Specific
Language (DSL) in which the programs will be expressed (see Section 3.1.2 for a formal
definition). The DSL is a constrained formal language that encodes the primitives (the
basic building blocks from before), which the synthesis model can use to construct
solutions. The design of a good DSL is crucial because it significantly influences the
complexity of the search space. In fact, it is often the case that hand-designing a
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1.1 The Generalisation Problem and a Hypothesis for Compositional
Learning

DSL is the main contribution to a model’s success [29, 30]. The algorithm relies on
the engineer or user to identify basic operations relevant to the task at hand, such as
addition or natural numbers in an arithmetic setting, recursive operators like map and
fold for list-sorting or concatenation in a string manipulation domain.

1.1 The Generalisation Problem and a Hypothesis
for Compositional Learning

Surprisingly, even large feed-forward and recurrent neural networks are known to be
poor at generalising outside the training range in algorithmic tasks – even simple
arithmetic such as counting or addition [19]. A number of approaches have emerged to
tackle specifically this issue:

• Augmentation with logical and arithmetic primitives (akin to providing the model
with access to a calculator) [31]. This may mean giving up differentiability of the
proposal, although solutions exist where this is kept [32]. The advantage however
is efficiency if the programs are algorithmically simple.

• Maintaining a purely neural architecture, but with a hand-designed unit that
encourages algorithmic generalisation: see Neural Arithmetic Logic Units (NALU)
[33] or Neural Arithmetic Units (NAU) [34] for addition/multiplication, or Neural
Programmer-Interpreters [35] for a more general method that is able to learn
the standard primary school algorithm for written addition (going digit by digit
right to left, carrying the remainder to the next decimal) using a scratchpad for
intermediate result storage .

In our approach, we take a third, seldom-explored path that goes against the
traditional goals of efficiency and optimality. Instead, our focus is on developing
trainable neural concepts or modules that can adapt to the data, irrespective of
domain. This flexibility mirrors the way humans learn and generalise across tasks,
where we identify the ability to store reusable, modular internal representations is
key to achieving broad generalisation. Since human learning is the only example we
have of a system that generalises effectively across a vast array of tasks, we strongly
believe that creating neural systems that embody this structural prior offers the most
promising route to achieving true, domain-agnostic reasoning.

While the two solutions above both guarantee better precision and scaling of the
operators, they sacrifice the inherent plasticity and open-endedness that characterise
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1.1 The Generalisation Problem and a Hypothesis for Compositional
Learning

the brain’s cognitive processes. Augmentations like these are not concerned with the
fact that there is no evidence to suggest that human learners are equipped with these
– or any other – algorithmic primitives at birth. Instead, we learn to construct (and
refine) concepts through experience, which by extension serves as a guiding principle
in our approach to designing an artificial reasoning system:

We hypothesise that by developing neural systems with inherent bias to-
wards compositional, algorithmic internal representations and the ability
to consolidate these modular concepts through experience, we can improve
generalisation across different tasks and contexts. Specifically, we propose
that training these concepts by following a curriculum, and constraining
program search to valid compositions of primitives according to a set of
formal syntactic rules, will help the system find solutions that generalise
better to any reasonably expected input within the given context.

To investigate this hypothesis, our model represents concepts in the form of neu-
ral programs (feed-forward networks) and is able to compose these controlled by a
transformer-based synthesis architecture – a complete description of the method is
presented in Chapter 4.

In our experiments, we observed that by progressing through a curriculum of
input-output pairs generated by programs of increasing complexity, the model was
able to learn and represent the fundamental concepts encoded, such as logic gates
and basic arithmetic operations. When shown examples of data generated by simple
composite functions of these primitives (e.g. NAND gate), the unobserved structure
successfully discovered – in the form of source code – demonstrating the system’s
ability to integrate learned concepts and apply them in simple unseen configurations.
These early outcomes are encouraging but require further validation and exploration
to ensure broader applicability. While the results are preliminary, they provide early
evidence that the system is capable of learning modular concepts and composing them
in ways that reflect basic algorithmic reasoning, indicating a promising foundation for
achieving more advanced, open-ended synthesis in future work.

1.1.1 Compositional Representations

To further motivate the choice of structural priors encoded in our approach, we argue
below (after [21, 36, 37]) that the presence of higher-level compositional patterns in
nature across a diverse set of domains serves as profound grounding for expecting
efficient modelling of such patterns in the human brain.
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1.1 The Generalisation Problem and a Hypothesis for Compositional
Learning

Turing’s living proof

Systems that exhibit successful learning in environments vastly more complex than
themselves, by definition require some compression that captures a relevant set of
features about their world. From the infinite pool of choices for this compression, it
seems a daunting task – if not impossible – to settle on one algorithm for this purpose,
yet it is apparent that our brains must be equipped with this capacity. The human
brain is often taken as proof for the existence and feasibility of a computing mechanism
capable of reducing its input signals and states to a internally manageable size while
maintaining a remarkable amount of meaningful structure and detail. There is long-
standing evidence that its capability extends beyond a fixed compression algorithm and
is able to learn a new procedure based on the domain and context [38]. However, we
have little more than hints of what exactly is done in a brain and classical algorithms
developed for digital storage devices, however efficient, do not focus on universality
and are by no means transferable to an arbitrary environment.

Computers equipped with modern programming languages are efficient and universal,
in some ways more so than any biological machine. There are a multitude of software
and specially designed algorithms available for a range of domains, yet nothing as
general or adaptive as us humans, and common sense reasoning and acting remains
elusive. As modern machine learning has shown, the question is more intricate than
scaling up computational resources and dataset size, and rather a question of core
mechanisms and architectures.

While trained deep learning systems may share some properties with how we think,
at times making human-like mistakes, these observations are mostly superficial ones.
As for its structure, a node in a neural network is a very crude and inaccurate model of
a real neuron at best and it can be stated with relative certainty that the brain does
not perform back-propagation to learn. One useful insight from deep learning is that
hierarchical representations generalise well in a range of domains [39][21].

In the following we view latent neural structures through the more general lens
of compositional representations, which involves constructing complex structures or
concepts by combining simpler components or building blocks. In contrast with
hierarchical representations, the focus will be on flexibility and reusability of smaller
units to create more diverse and sophisticated representations. The human brain is
adept at this form of processing, evident in how we understand language, create art,
and solve problems – thus, it is the focus of many sub-fields in machine learning to try
and replicate this aspect of intelligence.
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1.2 Outline

1.2 Outline

Having stated our aims and motivation, introducing the context and the subject of
our contributions, we move on to Chapter 2, where we review the key developments in
the relevant fields, examining related work in neural program synthesis, hierarchical,
Bayesian program synthesis, as well as neural algorithmic reasoning. Chapter 3 provides
the necessary theoretical background, covering program representation through λ-
calculus, domain-specific languages, and the STITCH algorithm for library compression,
while also introducing HBPS more formally – this lays the groundwork for our approach.
Building on this, Chapter 4 introduces our proposed method for Bayesian program
synthesis of neural functions, detailing the integration of the newly introduced Primitive
Inception phase into the the wake-sleep cycle, along with the attention mechanism used.
Chapter 5 then presents an evaluation of the method, demonstrating its adaptation to
domains such as Boolean logic, arithmetic functions, and mixed domains, with a focus
on curriculum learning. Finally, Chapter 6 concludes the thesis with a summary of
our contributions, a discussion of the limitations of our approach, and suggestions for
further research directions. Our implementation used for experiments can be found in
the Python repository1.

1https://anonymous.4open.science/r/bayesian_synthesis_neural_programs-0352
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Chapter 2

Related Work

As the method presented in this work combines recent research from a number of
areas, it is important to clarify exactly how each of these contribute to, and differ
from, our approach. Below is a survey of relevant topics and key results that have
influenced the development of our framework. We begin by introducing the field of
Neural Program Synthesis, followed by work on the Bayesian formulation of the problem
with hierarchical priors, which together provide the main source of inspiration for our
contribution. Subsequently, recent work in neural computation theory is reviewed
with particular focus on functional programming and NTMs, and their connections to
algorithmic reasoning. We argue that there is value in bringing these fields together
to advance generalisation capabilities of synthesis models, as they share the common
goals of algorithmic generalisation and scalability, and agree in the benefit of using
programs as representations.

2.1 Neural Program Synthesis

Program Synthesis is an area of research that predates modern machine learning
[40, 25] dealing with the problem of inferring an algorithm that explains a set of
input-output examples. For example, given an unsorted list and its sorted version we
aim to recover a generic sorting algorithm. At the heart of the classical framing of
the task is combinatorial search: the space of possible programs constructed from the
predetermined, fixed set of basic primitives has to be navigated such that a correct
algorithm is found in reasonable time. These approaches, however, were often limited
by the computational infeasibility of exploring the vast search space [25].

With renewed interest thanks to the success of deep learning guided search, a
number of approaches have demonstrated promising performance [37, 27, 41]. Neural
Program Synthesis [42]combines the principles of classical program synthesis with
modern deep learning and Bayesian inference, to guide the search for correct programs
more efficiently. Instead of relying solely on predefined rules and heuristics, neural
models can learn patterns from data with minimal human involvement, allowing them
to predict promising regions of the program space to explore.

One significant approach in this domain is the use of sequence-to-sequence models
such as LSTMs, originally developed for tasks like machine translation, but adapted
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2.2 Hierarchical Bayesian Program Synthesis

to generate programs from input-output pairs [43]. These models treat the program
synthesis problem as a sequence prediction task, where the input is the set of examples,
and the output is the corresponding program represented as a sequence of tokens. Our
model fits into this category, as it employs a transformer encoder-decoder architecture
translating from input-output pairs to a source code language we formally define in
Section 3.1

Another notable avenue of research is utilising reinforcement learning (RL) for
program synthesis, mostly in combination with the previously mentioned techniques.
Here, the agent is trained to maximise a reward signal that reflects the correctness of the
generated program. By interacting with an environment (e.g. a program executor), the
model learns to choose or write programs that produce the desired outputs, resulting
in successful program generation strategies [44]. Incorporating LLMs in this process
for writing code as well providing the agent with a curriculum is also common, with
Voyager [45] showcasing the benefit of skill libraries in the form of short programs
with remarkable success. Additionally, hierarchical and compositional approaches in
RL-based methods [46, 44] have been shown to generalise better due to the narrowing
of the search space as more complex structures are discovered.

A somewhat different paradigm, concerned with search over the space of a set
of deep learning models is Neural Architecture Search (NAS) [47]. This approach is
concerned with optimising the architecture itself of the neural network to better fit the
training data. NAS has been shown to improve performance compared to fixed models
by tailoring the network architecture to the specific characteristics of the problem on-
the-fly [48]. However, this perspective is concerned mostly with technical performance
gains by automating novel architecture discovery, while we will be concerned with a
wider framework that encapsulates ideas from, but is not limited to NAS.

Despite recent advancements, challenges remain in ensuring that neural program
synthesis models generalise well to unseen tasks, handle more complex program struc-
tures, and produce human-interpretable outputs. The following sections will explore
how other methodologies, including Bayesian approaches and neural networks designed
for algorithmic reasoning, address some of these challenges.

2.2 Hierarchical Bayesian Program Synthesis

Introduced in [26] and subsequently refined by Ellis et al. in [27] and [49], Hierarchical
Bayesian Program Synthesis (HBPS) presents a scheme that integrates Bayesian
inference with hierarchical structures to learn reusable subroutines and efficiently solve
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2.2 Hierarchical Bayesian Program Synthesis

complex tasks. The key idea behind HBPS is to model the synthesis process as a
probabilistic inference problem, where the goal is to find the most probable program
that explains the observed data.

As the name suggests, the space of possible programs is organised hierarchically
here, with the simplest and most fundamental programs (initial primitives) at the
lowest level and more complex compositions of these building blocks at higher levels.
Bayesian inference is used to guide the search through this space, allowing the model
to incorporate prior knowledge about e.g. program syntax and update its beliefs based
on the likelihood of observed data.

DreamCoder is a seminal work in this area, and closest to our method in its
procedure. It combined the principles of HBPS with deep learning to create a system
that learns to solve new programming tasks by building on a library of previously
learned subroutines [27]. The system alternates between waking phases, where it solves
tasks using its current library, and sleeping phases, where it refines its library by
identifying useful subroutines that can be reused in future tasks. The usefulness of a
subroutine is determined by a score calculated as its length × number of occurrences –
this step is called Abstraction. An efficiency improvement of this step was presented
in [49], with a freely available Python library1, which our method makes use of when
finding abstractions (see Section 4.1.3).

The hierarchical nature of this approach allows for efficient exploration of the
program space, as the model can focus on composing existing subroutines rather than
generating programs from scratch. Additionally, the probabilistic framework provides
a natural way to handle uncertainty and incorporate prior knowledge, making HBPS
particularly well-suited for tasks where the program structure is complex or where
data is scarce.

HBPS also offers significant advantages in terms of generalisation and interpretability.
By building programs from a library of learned subroutines, the model can more easily
transfer knowledge to new tasks, and the resulting programs are often more human-
understandable than those generated by purely neural methods. This interpretability
is crucial in applications where understanding the generated program is as important
as its correctness.

1https://github.com/mlb2251/stitch
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2.3 Differentiable and Functional Programming

2.3 Differentiable and Functional Programming

Differentiable, as well as neural programming [32, 35, 31] is built on the principles of
functional programming: a paradigm that uses functions as its main building block,
composing them to write programs. Memory management is usually done with heaps,
data is treated as immutable and type systems are also used. A core difference between
imperative and functional programming is that common control flow patterns (e.g.
recursive iteration) are abstracted over with higher-order functions (these take other
functions as arguments) like map and fold. Functional programming also provides
a strong theoretical foundation for composing programs in a modular and reusable
manner, which aligns well with the goals of program synthesis.

Relevant to our context, differentiable and neural programming languages seek to
leverage this compositional nature to design differentiable programs that can learn and
execute complex programs. One approach is to design neural architectures that mimic
the behaviour of functional programs, such as by using neural networks to represent
algorithmic constructs [31]. This will be a crucial element in our method described
below, as it allows almost arbitrary primitives to be trained, even on-the-fly if the
domain is substantially changed.

By learning to compose these functions, the model can generate complex programs
that solve a wide range of tasks, from data processing to symbolic reasoning. One of the
key advantages of this scheme is its ability to produce programs that are both modular
and interpretable. On one hand, the generated programs are easier to understand and
debug, making them more suitable for applications where interpretability is important.
As a consequence, the job of the synthesis model itself is simplified, as the search
space becomes easier to traverse with the compositions (assuming the data itself is
compositional, which is often the case in real world problems). This is hypothesised to
result in better alignment of the embedding space of functions in the synthesis model
and their meaning to a human observer.

For these reasons we observe that neural functional programming aligns well with
the principles of hierarchical Bayesian program synthesis, where the goal is to learn
reusable subroutines that can be composed to solve new tasks. Combining the strengths
of HBPS for functional programming with neural networks, this framework promises
the development of systems that are powerful and flexible, capable of solving complex
tasks with a high degree of generalisation.
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2.4 Neural Turing Machines

2.4 Neural Turing Machines

Neural Turing Machines (NTMs) are a class of neural networks designed to emulate
the capabilities of a Turing machine by augmenting a neural network with an external
memory component. Introduced by Graves et al. [50], NTMs extend the traditional
neural network architecture by allowing the model to read from and write to a memory
matrix, effectively enabling it to learn and execute algorithms that require the manip-
ulation of data over multiple steps. The key innovation of NTMs is their ability to
learn to control the read and write operations to the external memory, making them
capable of solving tasks that require iterative processing, such as copying sequences,
sorting lists, or performing simple arithmetic operations. This capability makes NTMs
particularly relevant for program synthesis, with generated programs involving loops,
conditional statements, and recursive function calls.

Differentiable Neural Computers (DNCs) are an extension of NTMs that further
improve the model’s ability to learn complex algorithms by introducing more sophisti-
cated memory management mechanisms [23]. DNCs can dynamically allocate memory,
manage memory usage more efficiently, and link different memory locations, enabling
them to solve even more complex tasks.

In the context of program synthesis, NTMs and DNCs offer a way to learn programs
that go beyond simple mappings from inputs to outputs. They can learn to execute
sequences of operations that involve intermediate steps, making them suitable for tasks
that require algorithmic reasoning. However, training these models is challenging due
to issues such as gradient instability, difficulty in learning long-term dependencies, and
the high computational cost of managing the external memory. As of yet, DNCs have
only been demonstrated to handle simple tasks that conventional programming also
solves easily.

Despite these challenges, NTMs and their variants represent a significant step
toward integrating neural networks with traditional computational models. In cases
where the programs involve intricate data manipulation and control flow, they may
provide a better framework over functional languages, albeit at the cost of complicating
the search procedure.

2.5 Neural Algorithmic Reasoning

Our final point of reference is the field of Neural Algorithmic Reasoning (NAR) [51–53],
an emerging area of research that seeks to enable neural models to reason algorithmically,

12



2.5 Neural Algorithmic Reasoning

allowing them to perform tasks that traditionally require explicit algorithmic steps, such
as sorting, searching, or dynamic programming. A common approach is to use Graph
Neural Networks (GNNs) to represent the underlying structure of the problem and to
learn the algorithmic steps required to solve it. GNNs are particularly well-suited for
this task because they can naturally model the relationships between different elements
of the problem, such as the nodes and edges in a graph [54].

For example, Velickovic et al. [55] demonstrated how GNNs could be trained to
approximate the behaviour of classical algorithms like breadth-first search (BFS) and
shortest-path algorithms. By training the GNNs on a variety of graph-based problems,
the model learns to generalise the algorithmic steps across different instances of the
problem, effectively embedding the algorithm within the neural network.

NAR has significant implications for program synthesis. By embedding algorithmic
reasoning within neural networks, these models can learn to perform tasks that involve
complex reasoning over structured data, such as mathematical problem solving, symbolic
manipulation, and even code generation [51]. This ability to learn and apply algorithms
within a neural framework opens up new possibilities for combining the strengths of
classical algorithms with the flexibility of neural networks. However, NAR also presents
its own challenges, particularly in terms of learning algorithms that are interpretable,
generalisable, and efficient. Ensuring that the neural network can capture the essential
properties of the algorithm without overfitting to specific instances is a key area of
ongoing research.

Summary of Related Work

These advancements in neural program synthesis, differentiable programming, and
neural algorithmic reasoning have created a rich landscape of approaches for integrating
neural networks with formal methods. The areas above have shown some of the most
promising results in fields such as mathematical reasoning, code generation, and
structured problem-solving. However, the integration of these methods into open-
ended, adaptable and generalisable systems remains an open challenge. This work
builds on these previous efforts by proposing a hybrid approach that combines Bayesian
inference and neural primitives, to help bridge the gap toward human reasoning and
alleviate some of the limitations identified in related work by offering more robust
applicability across domains.
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Chapter 3

Background

Having established the context of program synthesis and its intersection with neural
learning in related work, this chapter delves into the theoretical foundations that
underpin our approach. We first provide a detailed description program representation,
beginning with the λ-calculus and DSLs, providing us with a formal framework for
understanding how computations can be expressed and manipulated in our method.
Building on these fundamental concepts we then discuss the technical details of Hierar-
chical Bayesian Program Synthesis for to aid our discussion of how our contribution
extends it in Chapter 4.

3.1 Program Representation

3.1.1 λ-calculus

The λ-calculus [56] is a formal logic system for expressing computation based on
function abstraction and application. It forms the foundation for much of functional
programming and is widely used in program synthesis [24, 57, 27, 49] and representation
for its clarity and universality – being Turing-complete. The core idea behind λ-calculus
is that functions can be treated as first-class entities – meaning they can be passed
as arguments, returned as values, or constructed dynamically. The three primary
components or terms in λ-calculus:

1. Variables: represent input values to functions.

2. λ-abstractions: represent function definitions, in the form of λx.M , where x is a
variable and M is an expression.

3. Function applications: written as (MN), where M and N are both expressions.

Programs in λ-calculus are composed by applying functions to arguments, reducing
expressions to their simplest form:

This process, known as β-reduction, eliminates function applications by substituting
arguments into the function body, until no further reductions can be made, resulting
in what is known as a normal form. If an expression has a normal form, β-reduction
will eventually reach it, where no more substitutions or simplifications are possible.
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3.1 Program Representation

The power of λ-calculus lies in its minimalism and expressiveness: with just function
abstraction and application, it is possible to represent any computation1. This makes
it a versatile intermediate representation in program synthesis tasks, where we seek to
compose and manipulate functions in a systematic way.

In the context of program synthesis, λ-calculus provides a flexible foundation
for constructing and manipulating neural program representations. By representing
neural modules as λ-expressions, we can construct more complex programs through
function composition and recursion. We implicitly use simply-typed λ-calculus [58]
when performing data type management and function validation. It is an important
detail that abstractions create new functions that act on variables specific to their
scope and the body of the function itself. This structure enables more efficient search
strategies by defining a compact space of possible programs that can be sampled,
evaluated, and optimised.

3.1.2 Domain-specific languages

Any program synthesis framework is inevitably structured around some form of a
domain-specific language (DSL). This defines the set of building blocks from which
synthesis takes form. In our case, as we are dealing with λ-calculus as an intermediate
representation, the DSL consists of functional expressions, each representing a neural
network unit. Following [59] we now define the concept of a DSL along with an
associated weight vector.

Definition 3.1.1 (DSL and Weight Vector (D, ϕ)). A domain-specific language (DSL)
D is defined as a set of typed λ-calculus expressions. A weight vector ϕ for a DSL D is
a vector of |D|+ 1 real numbers: one value for each DSL element e ∈ D, denoted ϕ,
which controls the probability of element e being selected in a program. Additionally,
ϕvar controls the probability of a variable being selected in a program.

Together with its weight vector, a DSL defines a probability distribution over
programs, denoted p(ρ|D, ϕ). This distribution can be understood by a generative
sampling procedure that draws programs from p(ρ|D, ϕ).

The utility of a DSL is twofold: it constrains the space of possible programs, making
the search for valid solutions possible, and it encapsulates domain knowledge in the

1This is true for the untyped λ-calculus, which is Turing complete – meaning it can simulate any
Turing machine. However, the typed λ-calculus imposes restrictions that can prevent certain forms
of recursion or undefined behaviour, making it less expressive in some respects but safer and more
predictable in terms of program correctness.
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form of reusable functions. By defining a structured, limited set of building blocks,
the DSL ensures that the synthesised programs are both syntactically correct and
semantically meaningful within the domain.

In the context of HBPS, the DSL is not static—it evolves over time as the system
learns new abstractions. As the wake-sleep cycle progresses, useful sub-programs are
identified and abstracted into new functions that are added to the DSL, expanding its
expressive power. This dynamic nature of the DSL enables the system to continually
refine its library of functions, leading to more efficient and generalisable program
synthesis over time.

The weight vector ϕ plays a crucial role in guiding the search process during
synthesis. Higher weights indicate more likely components of a program, effectively
biasing the search towards common patterns or frequently used primitives. This
probabilistic approach to program generation, controlled by ϕ, allows the model to
balance exploration (trying out less likely programs) and exploitation (favouring highly
probable, reusable components).

As described in [59], this weighted DSL approach can dramatically improve the
efficiency of program search in synthesis tasks, especially in domains requiring compo-
sitionality and reuse of learned concepts. By evolving the DSL and adjusting ϕ based
on task performance, the system can tailor its search process to the specific needs of
the domain, reducing the complexity of program generation.

3.1.3 Library compression through abstraction (STITCH)

Operating on λ expressions in a given DSL, STITCH [49] is a recent algorithm
introduced for program synthesis that focuses on the efficient learning of reusable
program abstractions – that is, define new functions across programs such that the
overall code length is reduced. Previous methods in the program synthesis community
[60, 27] have tackled this challenge by finding common fragments, or tree structures
(in the computation graph), and refactoring existing programs with the abstractions.

STITCH, however, follows an approach the authors call corpus-guided top-down
synthesis, which avoids the complexity of refactoring by synthesising abstractions from
scratch. Unlike methods such as those presented in DreamCoder, which use semantics-
preserving rewrite rules to expose shared structure across programs, STITCH directly
searches for abstractions by examining syntactic patterns in the program corpus. The
central idea is to guide the synthesis process towards abstractions that maximise shared
structure, thereby enabling the discovery of reusable sub-routines that simplify the
programs.
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Compression as a Utility Function

The core objective is to minimise the size of a given corpus of programs by identifying
abstractions that compress the programs efficiently. Following the work of [60, 27, 59],
STITCH uses compression as the primary utility function for evaluating the quality of
learned abstractions. Specifically, an abstraction is considered valuable if it reduces
the overall size of the corpus when the programs are rewritten using it.

Formally, the utility function U(A) for an abstraction A is defined as the product
of the size of the abstraction and the number of places in the corpus where it can be
applied. This balances two key properties of a useful abstraction:

• The generality of the abstraction, ensuring it applies to multiple locations within
the corpus.

• The specificity of the abstraction, ensuring that it captures a significant amount
of structure at each location.

The goal is to find abstractions that are both general enough to be reused frequently
and specific enough to capture meaningful structure.

Learning Functional Abstractions

To illustrate this algorithm in action, consider the following set of programs written in
the λ-calculus [49]:

λx. * 8 (+ (* 3 1) 2)

λxs. map (λx. * 8 (+ 4 (* 7 x)) xs

λx. (- 9 (* 8 (+ x (- 1 0)))

The algorithm’s task is to identify and synthesise a functional abstraction that
can compress these programs by capturing shared structure. The optimal abstraction
found in this case is:

f0 = λα. λβ. (* 8 (+ α β))

This abstraction encapsulates the shared structure of the programs. When the
programs are rewritten using f0, the resulting corpus is reduced:
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λx. f0 (* 3 1) 2

λxs. map (λx. f0 4 (* 7 x)) xs

λx. (- 9 (f0 x (- 1 0)))

By finding and applying this abstraction, STITCH can minimise the overall com-
plexity of the programs while preserving their functionality. While this example only
searches among three simple programs, the same algorithm applied to a larger cor-
pus can identify relatively long abstractions, thus compressing their length, making
synthesis down the line significantly easier.

3.2 Hierarchical Bayesian Program Synthesis

In the following we introduce the framework used in the Bayesian formulation of the
program synthesis problem.

3.2.1 Probabilistic Model

To perform inference in the space of programs, we first need to develop our probabilistic
model of the generative process that produced our observations. Presented in Fig. 3.1,
our graphical model consists of the following elements: a shared library L containing
functions f0, . . . , fL−1, a set of programs P = {ρ1, . . . , ρn} directly constructed from
(and thus dependent on) L and a set of independent tasks T = {t1, . . . , tn} given by
sampling inputs and passing them through the corresponding program to get outputs.
We assume independence of tasks as they are, by definition, each generated by a
corresponding program sampled from the library. The manner in which the programs
themselves are sampled may depend on the dataset, but in every case they only depend
on the true library of primitives and there is no mechanism by which they would
interact with the other programs. These observations justify the choice of graphical
model we will use for inference going forward.

The objective will be to maximise the posterior distribution p(P ,L | T ) and so we
first write down the joint, factorised over tasks i ∈ {1, . . . , n} according to our model
as

p(L, T ,P) = p(L)
n∏

i=1
p(ρi | L) p(ti | ρi)
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L

ρ1 ρ2 ρ3

t1 t2 t3

Q(ρi | ti)

Fig. 3.1 Graphical model of the hierarchical Bayesian program learning setup. Nodes
ti represent the input-output examples, or tasks, while ρi are the programs that
generate these tasks. The central node L is the shared library of reusable functions or
subroutines. All ti are treated as observed variables throughout training. The model
is trained using an iterative wake-sleep procedure: Wake phase: Given the library
L and the observed tasks ti, the program synthesis network Q generates candidate
programs ρi. These programs are sampled from the posterior distribution p(ρ | t,L)
and are optimised to maximise the likelihood of generating correct solutions for the
observed tasks. Sleep phase: Given the proposed programs generated during waking,
we update the library L through a process of abstraction and compression, where
frequently occurring program structures are incorporated as new reusable functions.
The model then simulates new programs by sampling from p(ρ | L) as well as taking
inputs from t. These samples are used to re-train the synthesis network Q(ρ | t) to
approximate the posterior by learning from both the true programs (from waking) and
the fantasised programs (from sleeping).

or for ease of numerical handling the log-joint as

log p(L, T ,P) = log p(L) +
n∑

i=1
(log p(ρi | L) + log p(ti | ρi))

which follows from the conditional and marginal independencies encoded in the graphical
model in Fig. 3.1. We thus identify three components:

• The library prior p(L): our belief about which subroutines or functions are more
likely to be useful for explaining the data, before any observations are taken
into account. By Occam’s razor we will typically favour simplicity here, and
in general diversity has also been shown to be beneficial in identifying good
primitive features [61]. This is implicitly encoded in our approach, by enforcing
the syntax as well as in the way the curriculum is structured (see Section 5.3).
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3.2 Hierarchical Bayesian Program Synthesis

• The program likelihood p(ρi | L) reflects the probability of generating a given
program using the functions contained in L. Shorter compositional programs are
more likely under this distribution as we will see.

• The task likelihood p(ti | ρi) is the probability of observing the given input-output
examples ti had program ρi been used to generate them. This usually involves
executing the proposed ρi on the inputs and comparing its results with the true
outputs.

3.2.2 Wake-Sleep Cycle

DreamCoder [27] structures the learning process in a wake-sleep cycle, originally
introduced as expectation-maximisation in the Helmholtz machine [28]. At a high
level, the synthesis step itself is performed in the wake phase, where proposals P̂ are
generated conditioned on the input-output pairs T . These are ranked according to
their approximate likelihoods under the recognition model Q(ρi | ti). During the sleep
phase, a probabilistic generative model is trained which defines the prior as well as the
network Q(ρ | t) outputting the approximate posterior of a program. Next, to expand
on these stages further, we reiterate the key elements while referring the reader to Fig.
3.1 providing intuition before we proceed to write down the corresponding iterative
updates for each step, working to maximise a lower bound on the posterior over L
given tasks T .

Wake phase. Given the library L and the observed tasks ti, the synthesis network
Q generates candidate programs ρi for each task, ranked by their likelihood. Q(ρ | t) is
an approximation for the posterior distribution P (ρ | t,L) optimised (during sleeping)
to maximise the likelihood of generating correct solutions for the observed tasks. In our
method, this amortised sampling step is performed by a transformer-based synthesis
model, defined in Section 4.1.2. The corresponding maximisation step is:

ρt = arg max
ρ

p(ρ|t,L) ∝ p(t|ρ)p(ρ|L), ∀t ∈ T

where the program proposal ρt for task t is chosen such that it maximises the likelihood.

Abstraction phase. Equipped with the generated proposals, we proceed by ab-
stracting over common substructures in the code, adding them to L. This step has
been improved since DreamCoder’s publication, making STITCH [49] the preferable
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framework for compressing λ-calculus expressions efficiently. In this step we update
the library such that is maximises the joint:

L ← arg max
L

p(L)
∏
t∈T

max
ρ∈ρt

p(t|ρ)p(ρ|L)

where p(L) is our prior over libraries and p(t|ρ) is the likelihood of a task t ∈ T given
program ρ (see Section 3.2.1). The maximum task likelihood is taken over program
proposals ρt, for each task t.

Dreaming phase. With L updated, the model needs to be re-trained to recognise
potential applications of the added abstractions. This is done by drawing programs at
random from the new P (ρ | L) (without conditioning on observed tasks) and executing
these to create synthetic data referred to as fantasies. These can then be used to
re-train the synthesis network Q(ρ | t) without the need for more real data about the
abstractions from the previous step. Equivalently we write

θ ← arg min
θ

J (Qθ(ρ|t)− p(ρ|t,L)) ,

where the synthesis network parameterised by θ is trained to minimise an objective J

given data t ∼ T (replay) or t ∼ L (fantasy).
Having discussed the wake-sleep cycle, we introduce the other crucial component

of our method, the transformer architecture responsible for synthesising program
generations.

3.3 Encoder-Decoder Transformer

The Encoder-Decoder Transformer architecture, introduced by Vaswani et al. in [62],
has revolutionised sequence-to-sequence tasks by replacing recurrent models with an
attention-based architecture. It consists of two main components: an encoder, which
processes the input sequence, and a decoder, which generates the output sequence. Each
of these is built using self-attention layers (Section 3.3.2) and feed-forward networks,
enabling efficient processing of long-range dependencies in parallel.

3.3.1 Tokenisation and Embeddings

Before the input is passed into the encoder, it must first be tokenised. This involves
converting the input sequence into discrete tokens (integers), which are then mapped
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into embeddings, i.e., dense vectors that represent the tokens in a continuous space.
In essence, embeddings allow the model to capture semantic information about the
tokens.

Key aspects of this process include:

• Pad Token: Sequences often need to be padded to a uniform length to fit into
batches. The pad token is used to fill these extra positions, which are masked
during attention to prevent the model from processing them.

• End Token: To signal the end of a sequence, an end-of-sequence token (usually
written <eos>) is appended. This allows the decoder to know when to stop
generating further tokens.

• Positional Encoding: Since transformers lack the sequential inductive bias of
RNNs, they need a way to encode the order of the tokens. This is achieved using
positional encoding, which adds information about the position of each token in
the sequence to its embedding. These are usually sinusoidal functions that vary
based on the token’s position, but can also be a raw index, allowing the model
to distinguish between tokens at different locations in the sequence.

• Masking: Masking is critical for ensuring that the model does not attend to
certain tokens during training. For example, the pad tokens are masked to
prevent their influence on learning, and during decoding, a causal mask is used
to ensure that the decoder only attends to tokens that have been generated so
far, preventing the model from "cheating" by looking at future tokens.

3.3.2 Attention Mechanism

At the core of the transformer architecture is the attention mechanism, which allows
the model to focus on different parts of the input sequence while processing each
token. The attention mechanism is divided into two main parts: self-attention and
cross-attention.

Self-Attention

Self-attention is used within both the encoder and the decoder. It allows each token in
a sequence to attend to every other token, enabling the model to capture long-range
dependencies. The self-attention mechanism works by computing three vectors for each
token: a query vector, a key vector, and a value vector.
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The attention score for each token is computed as the dot product of the query
vector of one token with the key vectors of all other tokens, followed by a softmax
operation to normalize the scores. The final output is a weighted sum of the value
vectors, with the weights determined by the attention scores.

The formula for self-attention can be expressed as:

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V

Where: Q is the query matrix, K is the key matrix, V is the value matrix, dk is the
dimensionality of the key vectors, and the softmax ensures that the attention scores
sum to 1.

Cross-Attention

In the decoder, cross-attention is used to allow the decoder to focus on the relevant
parts of the encoder’s output when generating the next token in the sequence. Cross-
attention works similarly to self-attention, with the same formula as self-attention, but
now the query Q comes from the decoder’s previous output, and the key K and value
V matrices come from the encoder. This allows the model to align the decoder’s tokens
with the relevant parts of the encoder’s context, thus improving the accuracy of the
output sequence.

This architecture and attention mechanism make the transformer highly efficient
at learning and generalising from sequence data. It allows the model to handle
long sequences with ease, making it suitable for a variety of tasks, such as machine
translation, text generation, and – most importantly for our purposes – can be adapted
for program synthesis, as presented in Algorithm 1.

3.3.3 Multi-Head Attention

The Multi-Head Attention (MHA) mechanism is a core component of the transformer
architecture. Instead of computing a single attention score for each token in a sequence,
multi-head attention splits the input into multiple "heads." Each head performs attention
independently, focusing on different parts of the sequence. This allows the model to
capture a wider range of dependencies and relationships between tokens. After each
head computes its attention score, the results are concatenated and projected back to
the original size. Formally, we write:

MHA(Q, K, V ) = Concat(head1, head2, . . . , headh)WO
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where each headi is computed as:

headi = Attention(QW Q
i , KW K

i , V W V
i )

Here, W Q
i , W K

i , and W V
i are projection matrices for the query, key, and value

of each head, and WO is the output projection matrix. This mechanism allows the
transformer to learn more contextual representations by simultaneously attending to
different positions within a sequence, capturing more intricate patterns.

Algorithm 1 Encoder-Decoder Transformer with Multi-Head Attention
Require: x ∈ RB×Tx : Tokenised input sequence (e.g., input-output task)
Require: y ∈ RB×Ty : Tokenised target sequence (e.g., target source code)

1: function SynthesisModel(x, y)
2: Xe ← Embedding(x) + PositionalEncoding(x)
3: Ye ← Embedding(y) + PositionalEncoding(y)
4: Mx ← SourceMask(x) ▷ Attention mask for x
5: My ← TargetMask(y) ▷ Attention mask for y (including future masking)

6: ▷ Encoder: Apply self-attention to Xe

7: for l = 1 to Lenc do
8: Z← MHA(Xe, Mx) ▷ Multi-Head Attention
9: Z← LayerNorm(Z + Xe)

10: Z← FFN(Z) ▷ Feed-Forward
11: Xe ← LayerNorm(Z + Z)
12: end for

13: ▷ Decoder: Apply self-attention and cross-attention
14: for l = 1 to Ldec do
15: A← MHA(Ye, My) ▷ Masked self-attention within y
16: A← LayerNorm(A + Ye)
17: C← MHA(A, Xe, Mx) ▷ Cross-attention with x
18: C← LayerNorm(C + A)
19: Ye ← FFN(C) ▷ Feed-Forward Network
20: Ye ← LayerNorm(Ye + C)
21: end for

22: P← Softmax(WoYe) ▷ Projection to output space: unembedding matrix Wo

23: return P
24: end function
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Chapter 4

Bayesian Program Synthesis of
Neural Functions

The method developed here is built on a mixture of previous approaches to the
Programming-by-Example (PBE) problem with the specific aims of scalability, adapt-
ability and compatibility with a wide range of domains. Its novelty lies in connecting
a number of promising areas of research, and can be summarised as curriculum-based
[63] wake-sleep Bayesian algorithm learning [27] with neural primitives [32], with a
transformer-based generative model for synthesis. Our primary contributions are the
combination of Bayesian library learning and purely neural primitives, and the applica-
tion of an encoder-decoder transformer architecture [62] for inference of programs in a
wake-sleep scheme.

The main strengths of this approach as compared to other work on program synthesis
are twofold: in comparison to DreamCoder [27] the neural primitives in principle allow
for domain-agnostic generalisation, and the transformer-based synthesis model is more
efficient than traditional search-based approaches [57]. The ability to learn arbitrary
neural mappings is introduced for unseen functions where synthesis has failed. This
framework allows the model to develop its DSL given new tasks as well as combine
different domains when performing abstraction.

In the following each model choice will be discussed in detail, beginning with the
extended wake-sleep Bayesian algorithm learning framework, which forms the backbone
of the synthesis process.

4.1 Bayesian Inference of Programs

To connect the regimes of the λ-calculus introduced in Section 3.1.1 and the neural
building blocks of our approach, we first define the custom-built compiler, then describe
the contributions to the wake and sleep phases respectively, in more detail.

4.1.1 Neural Function Compiler

Before we can apply the HBPS framework to our neural concept library, we need
a principled way of handling the modular primitives at execution time. For this
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purpose, we implement a procedure that constructs a neural network from the library
of primitives (themselves neural units). Note that the weights of this network will
have already been optimised when the individual modules were trained (see Section
4.1.3) and thus only needs to be assembled. To perform this task, a custom-built
compiler is used, which as input takes an internal source code string to output a neural
network. The source code language (see example in Fig. 4.1) is a set of instructions
specifying which block (denoted {f0, f1, . . . }) to apply to which input vector (variables
{i0, i1, . . . }) or intermediate result vector (variables {v0, v1, . . . }). We use parentheses
to make function arguments visible, and the new line character to separate statements
for clarity. The last line is always a return statement, with a semicolon indicating the
end of the program.

The reader may note that the example in Fig. 4.1 includes variable assignments;
at first glance this suggests we are no longer using a purely functional programming
paradigm as statements like these are characteristic of imperative languages. However,
these variables are only used for temporary memory allocation to allow easier routing
and scope management, and are never allowed to be assigned if they are not either used
by a subsequent function call or returned. General variable assignment and keeping
track of global objects would lead to an altogether more complex search space of
programs, and we would no longer be able to apply the abstraction search introduced
in Section 3.1.3. For this reason, we constrain our source code language’s syntax for
variable assignments specifically, such that it remains purely functional in nature.

With this compiler defined, we are able to integrate neural primitives with HBPS,
which will be the main subject of the coming sections. To begin with, we further detail
the contributions introduced in Section 1.1, and explain how we extend the framework
of DreamCoder developed in Section 3.2.

f8
f1

i1
i0

i1 f4 v2

v0 = f8 ( i0 i1 ) 

v1 = f1 ( i1 ) 

v2 = f4 ( v0 v1 ) 

( v2 ) ;

( f4 ( f8 i0 i1 ) ( f1 i1 ) )

Fig. 4.1 Functional program representations: (left) λ-term: used for Abstraction;
(middle) internal source code: allows variable management and construction of neural
function; (right) neural blocks: program as a computational pipeline built from
primitives f1, f4, f8, input vectors i0 and i1, output vector v2. The intermediate
values v0, v1 are passed on immediately to the next block (f4 in this case).
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Fig. 4.2 The main wake-sleep cycle for synthesis of programs P and building the
concept library L. Starting with a Waking phase, given the observed (shaded) tasks T
we infer the latent (not shaded) programs P with the synthesis model Q, building from
L (also treated as an observed variable at this stage). Next, based on the outcome of
the synthesis, we split the input-output pairs into failed (Tf ) and successful (Ts) sets of
tasks, as well as saving the successful programs Ps. These move forward to the Sleeping
phase, first with the Primitive Inception step, making use of Tf , and training a new
primitive on these tasks. This amounts to inference of the now unobserved set of neural
primitives U ⊆ L, where ρf is the one line of source code calling the new primitive
function. Independently from this process, we also perform Abstraction, where we
compress Ps by finding useful sub-routines that repeat often and saving them to the set
of abstractions A ⊂ L in the form of λ-terms in the context of the DSL defined by L.
The synthesis model Q has to be familiarised with this newly updated library, which is
the goal of the Dreaming stage: sampling from the L the model generates ’fantasies’
P̃ , which are synthetic programs aimed to teach Q how to use the new library. These
programs are then used to produce a set of fantasised tasks T̃ by executing them on
random inputs to obtain outputs. This allows supervised training of Q to learn a
mapping from T̃ to P̃ , or in other words, to approximate p(P̃ | T̃ ,L). This concludes
the Sleeping phase, with L and Q passed on to the next wake-sleep cycle.

4.1.2 Wake Phase with Attention Mechanism

The goal of the wake phase is to generate new suitable programs for solving a given task.
More specifically, given a library given a Library L of neural concepts (or functions)
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and input-output examples (tasks) T the model synthesises a plausible set of programs
P. L contains reusable functions that can be composed to solve a given task. For
instance, in the domain of simple arithmetic operations, it might include functions such
as addition, subtraction, multiplication and division. Guiding the synthesis of programs
is the training data in T , consisting of sets t = {(x1, y1), (x2, y2), . . . , (xn, yn)} of pairs
of inputs xi to a single program ρ and their corresponding outputs yi = ρ(t). For
example, consider t+ = {(2, 3) → 5, (4, 5) → 9, . . . } generated by ρ+(x) := x0 + x1.
While the model relies on input-output examples in T , the supervision is not as direct
as in classical supervised learning. This step can be understood as weakly supervised.
The examples provide a general direction, but the actual program synthesis involves
exploring various possible programs that are consistent (approximately) with the
examples – defined as the following:

Definition 4.1.1 (Approximate Program Consistency). A program ρ is said to be
approximately consistent with a set of examples in the task set t ∈ T , where t =
{(x1, y1), (x2, y2), . . . , (xn, yn)} if, for all (xi, yi) ∈ t, the absolute difference between
the program’s output and the desired output is within a specified tolerance ϵ(t) ∈ R.
Formally, we say that ρ is approximately consistent with t if and only if:

|ρ(xi)− yi| ≤ ϵ(t) ∀ (xi, yi) ∈ t,

where ϵ is, in general, a function of t and represents the allowable error margin for the
example set.

In some settings – such as systems working with exact primitives – the threshold ϵ

will be zero, with no tolerance for error: we can be sure that if there is any error, the
program must be incorrect as the true or generating choice of subroutines guarantees
full consistency. This is not the case for our neural primitives however, as they are
always approximations of the true exact primitives that generated the data.

Transformers for example-to-code translation

Only having access to this signal of consistency and no true labels makes the supervision
less explicit and more indirect. This softly supervised nature of the problem requires
blending elements of supervised learning with exploratory or search-based methods.

In our approach we employ an attention mechanism that is most akin to an encoder-
decoder transformer [64, 62] used in machine translation – this is shown in Algorithm 1.
This choice is motivated by two main properties of transformers: their ability to handle
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4.1 Bayesian Inference of Programs

the varying length of task and source code sequences, and the attention mechanism [64]
providing a fitting way of on-the-fly function retrieval based on the task and context.
The former is an evident reason for the widespread applicability of these models, and
so let us see how the latter fits in to our framework. The central observation is that the
problem of program synthesis can be posed as one of translation: the goal is to obtain
a sequence of tokens Y in the language representing source code, given the tokens of
task t, encoded as X.

Note that the vocabularies (set of allowed tokens) of the tasks and code are not the
same, as the former, written VX , may include any integer, separator (_, -, ; etc.) or
letter, while the latter, VY , only holds functions f*, inputs i*, intermediate variables
v* (where * is an integer) and the separators required by the syntax: (, ), ;, newline,
=. This however does not pose a challenge to the transformer seen in Algorithm 1, as we
generate code tokens one by one, while attending to a fixed length of the input-output
sequence (determined by the context window, see Table A.2 for our settings). We use a
padding (_) and an end token (;) (refer to Section 3.3) as is standard to make training
more stable and efficient.

4.1.3 Sleep Phase with Primitive Inception Step

Previous approaches [27, 57] consider a sleep phase with two sub-stages: the Abstraction
process attempts to expand L with new composite functions constructed from the
DSL with the aim of compression; finally, the model Q(ρ|x) is trained to synthesise
programs with the newly updated L – this is called the Dreaming step [28].

Our work extends this framework with the Primitive Inception phase where, before
abstractions are drawn, the data from failed tasks during waking is used to train a new
primitive and add it to L. This is a crucial step for adapting to arbitrary domains,
and is our key contribution to the HBPS scheme.

Primitive Inception. This stage of the sleep phase uses the inputs and outputs from
failed tasks (Xf , Yf ) ⊆ Tf – that is, where synthesis did not produce an approximately
consistent program – to train a new neural network, and add it to the set of primitives
in L. By training the synthesis model to use this new concept, in the Dreaming phase,
the next time similar examples are seen this task is more likely to be solved.

There are a number of choices to make regarding the guardrails on this process. It
is clear from the nature of gradient-based optimisation of feed-forward neural networks
that they are not data-efficient and can easily overfit if only a small number of training
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samples are available. To overcome or at least limit this behaviour we make a number
of adjustments to the default training procedure.

First, we introduce a lower threshold on the loss which, if not reached after a pre-
determined number of epochs, the weights are re-initialised (using Xavier initialisation
[65]) to mitigate getting stuck in local minima. Similarly, if the loss is stagnating too
long we again reset the weights. Training is retried a specified number of times, or until
the threshold is reached. This corresponds to the error margin tolerance ϵ introduced
in Definition 4.1.2 of approximate consistency.

Second, the dimensions of the neural unit – parameterised by hidden layer depth
and width – are incremented upwards by a factor of 2 every few steps (typically 2-10).
By Occam’s razor this aims to ensure that if a simpler architecture is sufficient, it will
be preferred.

The complete wake-sleep cycle is illustrated in Fig. 4.2, with our contribution
(Primitive Inception) highlighted in colour. Finally, Algorithm 2 presents the procedure
step-by-step, with the four steps in total acting to update the synthesis model Q and
refine the library L given input-output pairs X, Y . We refer the reader to Section 3.2.2
for definitions of the Abstraction and Dreaming phases.

Algorithm 2 Main Cycle of Wake-Sleep Algorithm
1: procedure WakeSleep(Q, X, Y,L, rounds)
2: for i← 1 to rounds do
3: Wake Phase
4: proposals, failed_tasks←Wake(Q, X, Y,L)
5:
6: Sleep Phase
7: L ← Abstraction(proposals)
8: L ← Primitive Inception(failed_tasks)
9: Q← Dreaming(X, Y,L)

10: end for
11: end procedure

4.2 A Growing Library of Neural Functions

In the following we discuss the key implications of using a neural library to the overall
method and experimental considerations. We consider in particular the role of a
curriculum-based training procedure, where each wake-sleep cycle, the dataset of tasks
provided gets progressively harder (see Section 5.3 for details).
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Fig. 4.3 Library L of neural concepts at three different time-steps: initialisation, during
learning (t) and final state (T ). Up to t, the library is expanded with new functions
when the current set of functions (just f0 at L0) is found to be insufficient to explain
an example: in this case a new network (e.g. f1) is instantiated and optimised for that
example and added to L. From t to T , equipped with more primitives, we observe
another way to extend L, by abstraction: the set of generated programs in the wake
phase are compressed, by finding subroutines (like f3 above) that appear often.

Note on interpretability. It could be argued that the main product of the complete
wake-sleep curriculum procedure is the Library L built along the way (see Fig. 4.3).
It incorporates knowledge of the domains encountered during the model’s exposure
to the curriculum, encoding the most useful concepts (functions) found for solving
the tasks. From an algorithmic reasoning perspective, these are the best explanations
provided by the model to the observations it was handed. However, we can rationalise
the algorithms only if we understand the primitives, which may be true if alignment
with the curriculum functions is enforced, but it is not guaranteed in general. For
example, a learned concept could be a large network performing a complex task such
as semantic segmentation or image classification, where the underlying algorithm is
effectively a black box. Thus the algorithm produced is only interpretable to the extent
that its components are understood.
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4.2 A Growing Library of Neural Functions

4.2.1 Neural Primitives and Abstraction

The library could in principle include any neural network module, whether recurrent
or convolutional, 7 parameters or 86 million. However, for the experiments below we
initialise with a minimal number of relatively narrow hidden layers for new primitives
in the Primitive Inception step (parameters found in Table A.1) as the tasks examined
are simple enough for a handful of neurons to approximate well. As discussed in Section
3.2.2, these units can be assembled into abstractions, each a modular neural network
itself, added to L for potential later reuse – this is illustrated in Fig. 4.3.

This setup means the new primitives will be optimised in a supervised manner,
given input-output pairs from the task it needs to solve. The procedure for choosing
when to train a new neural unit however, has to be designed with learnability in mind:
if the examples contain more than one function, they may disagree on the output given
the same inputs, or even be orthogonal to each other.

To minimise this effect, our method employs a relatively aggressive training strategy
during primitive inception, coupled with a patient curriculum. In practice, this
means high learning rate, low error tolerance threshold (specified in Table A.1) and a
curriculum that only progresses if the primitive training has converged. Our findings
regarding these considerations and empirical justification for them can be found in
Section 5.3.

With the method defined, we move on to confirm the hypotheses in Section 1.1 and
validate our approach in the following chapter.

32



Chapter 5

Evaluation

The following evaluation of our HBPS framework with neural concept libraries aims to
demonstrate the model’s capacity to find general programs given its learned primitives
and to improve its library by creating new neural primitives. These experiments were
designed to test the flexibility and robustness of the system with a focus on the role
of curricula in its success. We explore the synthesis of simple arithmetic and boolean
functions, as well as the individual performance of the phases of the wake-sleep cycle:
wake, sleep (primitive inception, abstraction, and dreaming).

Our evaluation is based on tasks that require the synthesis of programs solving
arithmetic and logic operations. These tasks were chosen for their simplicity, as well
as their compositional nature, allowing a minimal demonstration of the utility of
neural concept libraries and the hierarchical Bayesian framework. Additionally, by
incorporating a curriculum of progressively complex tasks, we examine how structured
learning influences the system’s ability to generalise and synthesise programs.

5.1 Experimental Setup

We generate synthetic datasets to facilitate controlled experimentation and ease of
evaluation. Each dataset consists of examples corresponding to a specific task, where
functions are selected from a predefined set of Boolean and arithmetic operations (See
Table 5.1). For each task, input values are randomly generated, and the corresponding
output is computed by executing the source code (the target sequence). This process
ensures a diverse range of input-output pairs for training and evaluating the system,
but we stress that a representative set of examples is essential for good generalisation
properties (e.g. the proportion of zeros as inputs to a Boolean problem).

The main metric we will examine is function-matching accuracy, measuring the
alignment between generated proposals and target source code; ie. the proportion of
correctly guessed functions. For a match to occur, the function identifier (e.g. f12) has
to be correct and in the same location of the code when comparing the λ-expressions of
the proposal and target. For example, (f0 (f1 i0) f2) would not be a fully correct
prediction for (f0 (f2 i0) f1), but it would gain a partial score of 1/3. This score
is then averaged over the evaluation set, noting that it is normalised with respect to
the total number of function applications, and not number of tasks. Values expressed
as percentages include uncertainty estimates in the form of 95% confidence intervals.
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Table 5.1 Categories of primitive operations in the full curriculum.

Boolean Logic
AND
OR
NOT
XOR
NAND
NOR
XNOR

Comparisons
GreaterThan
LessThan
EqualTo
GreaterThanEqualTo
LessThanEqualTo
NotEqualTo

Arithmetic
Addition
Subtraction
Multiplication
Division

5.1.1 Boolean Tasks

The Boolean synthesis tasks involve generating programs that replicate the behaviour
of basic binary logic gates, such as AND, OR, XOR, and NOT. Composing such gates is the
basis of computing, making them ideal candidates for testing our system’s ability to
learn reusable concepts.

For each gate, the model is provided with random pairs of binary input-output
examples. For instance, in the AND gate task, the system receives pairs such as:

0, 0→ 0
1, 1→ 1
0, 1→ 0
0, 1→ 1
0, 0→ 1

...

The goal is to synthesise programs that replicate the observed behaviour, matching
known functions if possible, or training a primitive if not. In the example above, the
desired output is:

v0 = f0 ( i0, i1 )
( v0 ) ;

as long as f0 represents a neural network corresponding to the AND gate operation. If
there is no such function in L, a neural primitive is trained on the examples above
until convergence. The system’s ability to generalise beyond individual logic gates is
tested by presenting it with compositions of gates (e.g., synthesising a circuit that
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combines AND and OR gates). This evaluates the model’s capacity to combine learned
primitives to solve more complex tasks.

5.1.2 Arithmetic Functions

We also include elementary arithmetic functions like addition and multiplication in the
training set, by providing single-digit input examples in the same manner as before:

3, 5→ 8
9, 0→ 9
1, 1→ 2

...

for the addition task, where the target is similar code as for Booleans, but with the
function corresponding to the neural concept of addition in L. The primitives are not
expected to generalise to multiple digits or magnitudes outside the training range, as
this is a known weakness of feed-forward networks [19].

5.1.3 Mixture of Domains

To highlight the domain adaptation capability of the system, we introduce tasks
that mix Boolean and arithmetic operations. For example, the system may need to
synthesise a program that takes Boolean inputs, performs logic operations, and then
applies an arithmetic function to the result. An example task might be:

1, 1, 5, 3→ 8
0, 0, 6, 4→ 0
0, 1, 5, 0→ 0

...

as generated by AND(1, 1) * (5 + 3), or written (* (AND 1 1) (+ 5 3)) as a λ-
term. In this case, the system must recognise the presence of the two domains, identify
which functions to use and route the variables to the correct input positions. This
tests whether the model has the fundamental ability to handle cross-domain tasks and
compose functions from multiple categories.
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5.2 Separating the Phases

5.2 Separating the Phases

5.2.1 Wake Phase

In the wake phase, the system generates candidate programs based on its current
library of primitives and neural concepts. We evaluate this stage of the cycle by using
a previously trained model to generate proposals for a task, and compare them to the
true target source code. Note that in general there are many programs that could give
the same outputs to a finite set of inputs, which makes this metric uninformative if
the number of function applications in the programs is large enough. In those cases,
we can only use the weaker signal of execution loss, which compares the outputs of the
generated program against the target source code for a range of inputs.

Below, we provide two examples to illustrate the program generation process: one
showing the output of a model before it has fully converged on the correct solution,
and the other demonstrating a successfully generated program after convergence. All
examples were generated with the hyperparameter settings in Table A.2. Padding
tokens are omitted for clarity.

Example generation (correct): In the following example, the system generates a
valid and correct program that precisely matches the target source code for the task:

1, 4, 0→ 4
3, 2, 1→ 7
2, 0, 2→ 2

...

⇒
v0 = f6 ( i0 i1 )
v1 = f4 ( v0 i2 )
( v1 ) ;

Here, the candidate program defines two variables, v0 and v1, using the functions
f2 and f1 respectively. The output is correctly structured, where f1 operates on
v0, and the final expression returns v1. This indicates that the model has learned
an effective representation for the elements of the target program and input pairs,
proposing the correct solution.

Example generation (before convergence): The following example shows a
program generated for the same task, earlier in the training process, before the model
has fully converged:

1, 4, 0→ 4
3, 2, 1→ 7
2, 0, 2→ 2

...

⇒
v0 = f2 ( i1 i0 )
v1 = f15 ( v0 f1 v0 )
( v1 ) ;
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In this case, the model has not yet learned the correct structure. The candidate
program incorrectly applies f15 instead of the desired f1, and attempts to pass
additional arguments to f15, resulting in an invalid program. This illustrates the
iterative nature of the training process during the wake phase, where the model
gradually refines its understanding and program generation capabilities. While the
structure is similar to the correct program, the erroneous application of f15 reflects
the system’s intermediate state before convergence.

Comparing these two examples, we can see how the model’s outputs evolve over
time, moving from initially flawed programs to correctly synthesised solutions. As for
the full wake-sleep cycle, in cases where the generated programs don’t match the exact
target, execution loss can still be used to evaluate the correctness of the behaviour by
comparing the candidate program’s outputs with those of the target.

Results for Boolean Tasks

In the context of Boolean tasks, the system relies heavily on the wake phase due to the
binary simplicity and well-defined nature of Boolean logic. The system must generate
accurate expressions for various tasks, such as constructing logic gates (AND, OR, XOR)
or combining them into more complex circuits. As even large differences in program
structure may still lead to the same truth table output, we observe overfitting to be a
very common issue.

To illustrate this, consider the following input including every element of the truth
table and a generated proposal:

0, 0→ 0
0, 1→ 0
1, 0→ 0
1, 1→ 1

⇒
v0 = f0 ( i1 i0 )
( v0 ) ;

where f0 stands for the AND gate. While this generation completely fits the data
presented, it is not the source code that generated these examples. In fact, the target
in this case was:

v0 = NAND ( i1 i0 )
v1 = NOT ( v0 )
( v1 ) ;

It is, of course, not possible to guess the correct target in cases like this, and
therefore it is unreasonable to expect the model to find it. However, if the synthesis is
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trained past the first signs of convergence, we observe it does indeed always produce
the true target. We attribute this to overfitting, whereby the model has memorised
the exact inputs and their ordering, mapping them to this specific code target with
certainty. To overcome this, we suggest early stopping during the Dreaming phase, or
to curate a dataset with no such overlaps, pruning for unique truth tables.

Mixture Tasks and Depth

We perform additional testing on the system’s adaptation to functional complexity, in
the form of code depth. This measures the number of function application statements
in a program – in source code form, this corresponds exactly to number of lines − 1
(subtracting the last line, the return statement where functions are disallowed). For
example, our previous example showcased a depth-mismatch where the proposal depth
was one, while the target was two. From the example, we might speculate that depth
seen during training affects the model’s likelihood of generating programs of the same
complexity.

To quantify this relationship, we train synthesis models provided with tasks gen-
erated by programs of varying depth, namely 1, 2, 3 and a uniform mixture of these.
These trained models are then each evaluated on test sets containing problems of each
one of depth 1, 2 and 3 separately. The results, shown in Table 5.2 in terms of function
matching accuracy indicate that the model is significantly influenced by the depth of
training examples, exhibiting a form of specialisation to the depths seen. While overall,
models performed best on the depth 1 test set, followed by their own train depth, we
also note that the mixture train set seems to retain a good balance of each complexity.
This justifies our use of mixed depths during the full curriculum experiments.

Table 5.2 Function-matching performance of different train depths across evaluation
depths, averaged over 50 random restarts. Maximal values by row highlighted.

Test Depth
Training Depths

1 2 3 1,2 and 3
1 58.23 ± 2.5% 26.01 ± 1.8% 24.02 ± 2.0% 47.72 ± 2.3%
2 7.47 ± 1.2% 23.46 ± 1.5% 12.40 ± 1.0% 17.69 ± 1.4%
3 4.92 ± 1.0% 8.08 ± 0.9% 15.29 ± 1.3% 6.64 ± 0.8%
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5.2.2 Sleep Phase

Primitive Inception

In the simple domains tested, the success of the Primitive Inception stage relies solely
on the quality of the training data in the given cycle. If there is contamination by
means of leftover examples from another task that was failed to be accounted for by
another program, the primitive will be a poor approximation of the intended learning
outcome.

However, with isolated training of the different primitive tasks until convergence,
we can achieve arbitrarily low loss on the tasks in Table 5.1. While it was hypothesised
that for a compositional task it should be more effective to synthesise a program
capturing that structure, this was not consistently observed to be the case. The failure
to propose a program that achieved a loss below the threshold automatically results in
a new primitive being created, even if the composition was a simple one.

5.3 Curriculum Learning

In this section, we evaluate how the system performs under a structured curriculum,
where tasks are presented in increasing complexity. This is in contrast to mixed
difficulties and function types presented all at once to the synthesis model. We observe
significant improvements in the accuracy of function matching in the wake phase – up
to 75%, an improvement of more than 15% (see Fig. 5.1). This may be due to the
enforced alignment of learned primitives with their target functions, thanks to the
curriculum not progressing to the next step until the intended outcome (e.g. learning
the new function) is achieved.

5.3.1 Adding Primitives

We look at the same two domains from before, Boolean and arithmetic; in particular
the success of the Primitive Inception step adding new neural concepts, is investigated.

Logic Gates

The most successful curricula began with one single-gate task at a time (e.g., AND, OR,
NOT), followed by combinations of gates (e.g., NAND circuits) only after the primitives
were successfully trained. This behaviour clearly highlights the fact that when there is
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Fig. 5.1 Function matching accuracy evaluated with depths 1-3, varying the maximum
fantasy generation depth in the Dreaming phase. Mean accuracies obtained from 5
different models each evaluated 20 times with random restarts.

a mixture of tasks present during Primitive Inception this hinders the ability of the
model to optimise for a new primitive.

Arithmetic

Similar to the Boolean dataset, the arithmetic functions domain also benefited from
isolated training of each concept through Primitive Inception. The compositions (e.g.,
an example like (+ i1 (* i0 i1))) are only identified successfully by the synthesis model
if the preceding cycles were successful, even the rounds for functions not included in
the current composition. We suspect this may be due to more stability in the attention
mechanism’s training, as the data is cleaner if all neural concepts were are aligned
correctly with their true generative counterparts.

5.3.2 Increasing Depth

We test the effect of fantasy depth on function matching accuracy, to investigate the
sensitivity to this hyperparameter. As the results in Fig. 5.1. show, there is a clear
tendency for the accuracy to peak when evaluation and fantasy depth are the same,
with the highest score for the simple function applications (depth 1) at 75.34± 6.2%.
During training, we also observe that the allowed depth of the generated fantasies
strongly correlates with performance on curricula with progressively increasing depth.
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Chapter 6

Conclusions

6.1 Summary of Contributions

We have presented several contributions in the area of program synthesis, bringing
together a number of perspectives, namely algorithmic reasoning, library learning
and HBPS. Starting from a Bayesian inference framework most similar to that of
DreamCoder, we introduced a novel extension of its wake-sleep cycle, the Primitive
Inception phase (Section 4.1.3), where a new neural primitive is trained on tasks that
could not be explained by the synthesis model. This approach enables systems to
develop reusable, modular internal representations in the form of neural programs,
with the potential for greater flexibility and adaptability across a range of tasks than
previous approaches with manually designed DSLs.

A second contribution is the application of the encoder-decoder transformer archi-
tecture of [62] for translating from input-output pairs to the source code functional
programming language (Section 4.1.2). This is a key part of our implementation that
allows the learning of a hierarchical inference scheme encoding the grammar, as well as
enabling length-generalisation with respect to inputs and generations via the attention
mechanism used in predicting the tokens one at a time.

Additionally, we highlight the role of our design and implementation of a dynamic
curriculum learning framework that gradually increases task complexity, enabling more
efficient learning of basic primitives at Inception and better embeddings for these
during Dreaming. By focusing on modularity and reusability, this training framework
improves the system’s ability to learn more robust representations that are more likely
to generalise across diverse tasks.

Lastly, we conducted an evaluation as a proof-of-concept to demonstrate the
effectiveness of our approach across various domains, including Boolean, arithmetic,
and simple compositional algorithmic reasoning tasks (Section 5.2.1). Our experiments
confirm that the system is able to obtain new knowledge and incorporate it in its
concept library for reuse, purely through the examples it is provided with in the
curriculum.

We claim that these contributions collectively advance the field by presenting a
method of program synthesis in a neural functional programming language continually
developed by the model purely from experience. The suggested framework with
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curriculum learning presents a pathway toward systems that can autonomously develop
and refine functional abstractions across a variety of contexts, laying the groundwork
for future research in more general, domain-agnostic program synthesis and algorithmic
reasoning.

6.2 Limitations

Despite the strengths of the proposed approach, several limitations should be acknowl-
edged. First, while the method performs well on smaller, modular tasks, it has not been
confirmed to be able to scale as the complexity of the program space grows. Larger or
recursive programs still pose a challenge for the system, as the current method does
not provide the necessary tools for this type of generalisation.

Another limitation concerns our trading of reliance on predefined primitives for
the necessity of a well-curated training curriculum instead. The system’s performance
is highly sensitive to the pace and progression of the learning tasks and the set
of primitives it tries to mimic. In cases where the example set is not adequately
representative of a program’s behaviour, or the curriculum is poorly designed, the
system will likely struggle to form effective abstractions and perform poorly on more
complex tasks. In other words, this approach with its adoption of purely neural
primitives does not eliminate the need for human domain knowledge, but shifts its role
from manually designed primitives to carefully crafted curricula to ensure quality and
representativeness.

On a more technical note, the execution loss metric used for evaluating program
correctness in certain cases, especially when exact match criteria are not feasible, can
lead to misleading conclusions. Programs that behave similarly in terms of output
but are structurally different from the target program have no way of surfacing, even
though they may be preferable in terms of simplicity. This can obscure the system’s
ability to learn the correct underlying representations, highlighting the need for more
sophisticated datasets as well as revised fantasy generation in the Dreaming phase
(Section 4.1.3).

Finally, a significant limitation of this work was the constraint on both time and
computational resources. With just three months allocated for the project and limited
access to high-performance GPUs, the scope of experiments was necessarily constrained.
This meant that certain experiments had to be prioritised over others, leaving limited
room for deeper exploration or richer datasets, or to conduct extensive hyperparameter
tuning. As a result, certain aspects of the system, such as the full scalability of the
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approach and its application to more complex or deeper tasks, could not exhaustively
be tested. These resource constraints also limited the breadth of tasks that could be
evaluated, and the performance could likely be further improved with access to more
compute for larger-scale experiments.

6.3 Further Work

We believe there are several promising directions for future research building on the work
presented. First, improving the system’s scalability is critical, particularly in handling
more complex, recursive tasks. We suggest two ways of tackling this: incorporating
recurrent neural networks (RNNs) [66] as modules to handle sequential tasks; or leaving
it to the function compiler (Section 4.1.1) and abstractions to identify and incorporate
map, fold and filter.

Similarly, every domain has its own set of inductive biases, along with specialised
architectures to capture these, such as convolutions in vision or transformers in language
processing. For a truly generalisable primitive acquiry process, we cannot rely on feed-
forward networks only. Constructing neural blocks with more architectural freedom in
connections and structure would certainly allow broader generalisation capabilities.

Additionally, integrating stronger mechanisms for handling contradictory data would
be beneficial. To minimise the system’s sensitivity to the quality of the curriculum, it
needs to be robust against imperfections in the data provided. Developing a mechanism
to identify which examples fit into a task (by e.g. a learned similarity measure) could
significantly enhance the practical applicability of the approach.

From a computational theory perspective, more sophisticated memory management
could be employed for better efficiency, while adoption of fuzzy type systems [67] would
aid search and robustness.

Finally, we propose performing a set of experiments, particularly in a perceptional-
programming-by-example (PPBE) context, to further showcase the advantages of using
neural primitives trained on-the-fly, while adhering to a strict formal grammar. For
example the datasets used in demonstrating DreamCoder’s abilities in abstraction, or a
perceptual task coupled with algorithmic elements (such as those presented in [35, 37]).

While challenges remain, particularly in scalability and robustness, the potential
for broad applicability across diverse domains is encouraging. As research in this field
progresses, we anticipate the development of systems capable of handling more complex,
generalisable tasks with minimal human oversight, paving the way for more adaptive,
reliable intelligent machines.
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Appendix A

Hyperparameter Settings

In this appendix, we provide the hyperparameter settings used in the various phases
of the wake-sleep cycle and the transformer model training. These are the settings
required for replicating the experimental results discussed in Sections 5.3 and 5.2.1.

A.1 Wake-Sleep Hyperparameter Settings

Table A.1 lists the hyperparameters used during the wake-sleep phases, including the
Waking, Primitive Inception, and Dreaming phases. Each phase requires its own set of
parameters to guide the training process in a stable manner.

Table A.1 Hyperparameter settings for different phases of wake-sleep.

Hyperparameter Value
Waking:
Number of Tasks 1000
Number of Examples per Task 16
Number of Proposals 10
Primitive Inception:
Initial Concept Width 2
Initial Concept Height 1
Threshold Acceptance Loss 10−2

Inception Learning Rate 10−2

Inception Epochs 1000
Dreaming:
Number of Fantasies 105

Number of Fantasy Examples 8
Fantasy Depth 3
Dreaming Learning Rate 10−4

Dreaming Epochs 500
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A.2 Transformer Hyperparameter Settings

A.2 Transformer Hyperparameter Settings

Table A.2 presents the hyperparameters used in the transformer-based synthesis model
training (see Section 5.2.1). These settings determine the architecture of the transformer,
including the number of attention heads, and embedding size, which the method is
sensitive to in terms of performance.

Table A.2 Transformer hyperparameter settings used.

Hyperparameter Value
Number of Attention Heads 8
Head Size 32
Embedding Size 512
Encoder-Decoder Layers 4
Feed-forward Hidden Dimension 256
Context Window Length 64
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